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Abstract

Background: Patients suffering from gastrointestinal cancer comprise a large group receiving home hospice care in
China, however, little is known about the prediction of their survival time. This study aimed to develop a
gastrointestinal cancer-specific non-lab nomogram predicting survival time in home-based hospice.

Methods: We retrospectively studied the patients with gastrointestinal cancer from a home-based hospice
between 2008 and 2018. General baseline characteristics, disease-related characteristics, and related assessment
scale scores were collected from the case records. The data were randomly split into a training set (75%) for
developing a predictive nomogram and a testing set (25%) for validation. A non-lab nomogram predicting the 30-
day and 60-day survival probability was created using the least absolute shrinkage and selection operator (LASSO)
Cox regression. We evaluated the performance of our predictive model by means of the area under receiver
operating characteristic curve (AUC) and calibration curve.

Results: A total of 1618 patients were included and divided into two sets: 1214 patients (110 censored) as training
dataset and 404 patients (33 censored) as testing dataset. The median survival time for overall included patients
was 35 days (IQR, 17-66). The 5 most significant prognostic variables were identified to construct the nomogram
among all 28 initial variables, including Karnofsky Performance Status (KPS), abdominal distention, edema, quality of
life (QOL), and duration of pain. In training dataset validation, the AUC at 30 days and 60 days were 0.723 (95% C|,
0.694-0.753) and 0.733 (95% Cl, 0.702-0.763), respectively. Similarly, the AUC value was 0.724 (0.673-0.774) at 30
days and 0.725 (0.672-0.778) at 60 days in the testing dataset validation. Further, the calibration curves revealed
good agreement between the nomogram predictions and actual observations in both the training and testing
dataset.

Conclusion: This non-lab nomogram may be a useful clinical tool. It needs prospective multicenter validation as
well as testing with Chinese clinicians in charge of hospice patients with gastrointestinal cancer to assess
acceptability and usability.
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Background

Cancer is currently considered as an important cause of
mortality around the globe. According to the latest esti-
mated result of global cancer burden, the incidence and
mortality in China account for 23.7 and 30.2% of cancer
in the world respectively [1]. Moreover, the incidence
and mortality cases of gastrointestinal cancer such as
esophageal cancer, gastric cancer, and liver cancer in
China make up about half of that observed globally [2].
Most patients with gastrointestinal cancer are at the ad-
vanced stage when diagnosed [3]. For treatment-
refractory disease and as functional decline begins, pa-
tients can benefit from hospice care for symptom man-
agement and to reduce suffering at the end of life. When
someone is choosing hospice, predicting survival time is
more important than predicting treatment response, as
it provides opportunity for patients and families to
achieve closure [4, 5]. The dying trajectory of patients
with cancers is part of the most predictable prognostic
information [6]. However, previous studies consistently
reported about the inaccuracy of clinicians in estimating
the survival time and mainly rely on their intuitions or
self-clinical judgment [7, 8]. Systematic reviews have
shown that clinicians often overestimated actual life ex-
pectancy [9, 10].

To improve the accuracy of clinicians’ predictions, nu-
merous prediction tools have been designed specifically
for advanced-stage patients. These tools were the Pallia-
tive Prognostic (PaP) score [11], Delirium-PaP (D-PaP)
[12], Palliative Performance Scale (PPS) [13, 14], Pallia-
tive Prognostic Index (PPI) [15], modified Glasgow Prog-
nostic Score (mGPS) [16, 17], and Prognosis in Palliative
Care Study (PiPS) [18] etc. However, there is no consen-
sus regarding the most appropriate tool for clinical use
[19]. Therefore, many studies have further determined
prognostic factors in terminal cancer patients and con-
structed specific survival prediction models. For ex-
ample, Feliu et al. produced an exceedingly accurate
nomogram that uses basic clinical and analytical infor-
mation to predict the probability of survival at 15, 30,
and 60 days in terminally ill cancer patients [20]. Schon-
wetter et al. performed statistical analysis on data from
more than 300 terminal lung cancer patients in a non-
profit community hospice to develop a lung cancer-
specific prognostic tool to predict 50 and 90% mortality
in the days after admission to a hospice [21]. As far as
we know, there is no gastrointestinal cancer-specific
prognostic model for home hospice patients in China.

Compared with developed countries, China’s hospice
career started late and developed more slowly. In China,
as an important developing country, only a few investi-
gators and institutions participate in hospice care-related
research, especially for prognostic survival. As a result,
China has lost the opportunity to share and exchange
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experiences with the world in the field of hospice [22].
Wang YM et al. performed a follow-up study on 674 pa-
tients with advanced stages of cancer in a hospice and
identified factors that significantly affect the survival rate
[23]. Zhou LJ et al. retrospectively analyzed data from
1019 advanced cancer patients who died within six
months in a palliative home care service and produced a
simple Chinese Prognostic Scale (ChPS) for predicting
the survival rate of patients with an advanced stage of
cancer [24]. In summary, there is a scarcity of studies
concerning the survival of gastrointestinal cancer pa-
tients receiving home hospice care service in China as
well as its predictors. Moreover, the least absolute
shrinkage and selection operator (LASSO) Cox regres-
sion, with advantages of building predictive models that
are more accurate, robust, and generalizable [25], has
not been used in these patients. Thus, the aim of our
study was to utilize LASSO Cox regression to build a
model to accurately predict survival time in home hos-
pice care patients with gastrointestinal cancer. In
addition, we constructed a nomogram to represent our
predictive model in a graphical format, making the
model more accessible to clinicians and patients alike.

Methods

Research objects

Patients with gastrointestinal cancer who survived less
than six months from the Hospice Unit of Shantou Uni-
versity Medical College-affiliated First Hospital between
January 2008 and December 2018 were included in this
retrospective study. The Hospice Unit of Shantou Uni-
versity Medical College-affiliated First Hospital is the
first Hospice Unit established in 1998, founded by Li Ka
Shing Foundation to provide free home-based holistic
care for patients with terminal cancer in mainland China
[26]. Patients with any missing data were excluded from
our study. The current study includes the retrospective
statistical analysis on clinical data of the deceased pa-
tients, without disclosing the patients’ identity, and
signed consent was not obtained, in accordance with the
guidelines of the Chinese Ministry of Health.

Data collection

The following data were collected from the case records:
(1) general baseline characteristics—including age, sex,
area of residence (rural or urban), education, survival
time, awareness of the disease (full understanding/partial
understanding/ complete ignorance), hypertension his-
tory, diabetes history, smoking history, drinking history;
(2) disease-related characteristics—including cancer
diagnosis, metastasis, previous cancer treatment (sur-
gery/chemotherapy/radiotherapy), duration of pain be-
fore admission, related major symptom (constipation/
anorexia/nausea/vomiting/abdominal  distention/weight
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loss/insomnia/edema/tachypnea), previous analgesic treat-
ment (none/NSAIDs/weak opioids/strong opioids), and ef-
fect of previous analgesic treatment (none/bad/average/
satisfied); (3) related assessment scale score—including Kar-
nofsky Performance Scale (KPS) score, quality-of-life (QOL)
score, and numeric rating scale (NRS) score. These data were
recorded by the clinical team, consisting of four physicians
and two nurses, on a series of structured data collection
sheets on admission. The survival time was calculated as the
number of days from admission to an event (dead or service
paused). The symptoms were collected as “present” or “ab-
sent” on admission. The degree of pain was assessed by nu-
meric rating scale (NRS) [27]: O for painless, 1-3 for mild
pain, 4—6 for moderate pain, and 7-10 for severe pain. The
patient’s performance status was evaluated according to the
Karnofsky Performance Scale (KPS) [28, 29], an 11-point rat-
ing scale that ranges from normal functioning (100) to dead
(0), which has been translated into Chinese. The QOL scale
(Chinese version), consisting of 12 items—including appetite,
energy, attitude toward treatment, sleep, family relationships,
fatigue, work relationships, pain, perception of cancer, activ-
ities of daily life, side effects of treatment and facial expres-
sion, was developed by Sun Yan in the 1990s by applying
international scales to the context of the Chinese culture
[24]. The total score for this scale is 60, with 1-5 scores for
each item. For instance, the appetite is scored from hardly
eat (1) to normally eat (5).

Statistical analysis

The data were split into two sets using stratified random
sampling: 75% as a training set for developing a predict-
ive model and 25% as a testing set for validating it. The
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differences between the testing and training sets were
evaluated using the Mann-Whitney U test for continu-
ous variables and the chi-square test for categorical vari-
ables. Categorical variables were represented as
percentages while continuous variables were reported as
median and interquartile ranges (IQR). Before perform-
ing statistical analyses, we converted variables including
KPS scores, QOL scores, NRS scores and age into cat-
egorical variables by using the X-tile software (version
3.6.1, http://medicine.yale.edu). X-tile plots provide an
intuitive method to assess the association between vari-
ables and survival. The X-tile program can automatically
select the optimum data cut point according to the high-
est x> value (minimum p value) defined by Kaplan—
Meier survival analysis and log-rank test [30]. As a re-
sult, we categorized KPS scores as 30 or lesser, 40, 50 or
more; QOL scores as 30 or lesser, 3lor more; NRS
scores as 3 or lesser, 4 to 6, 7 or more; age as less than
60 years, 60 or more years.

We used the 10-fold cross-validated Cox proportional
hazard regression with LASSO-penalization to select the
most significant prognostic variables of all initial vari-
ables. By performing both variable selection and penal-
ization, the LASSO is able to build accurate models
without under-fitting or overfitting, which leads to su-
perior performance over traditional multivariable regres-
sion [31]. Consequently, the LASSO has been extended
and broadly applied to the Cox proportional hazard re-
gression model for survival analysis [32]. Further, the
most significant predictors were identified to construct
the nomogram to predict the 30-day and 60-day survival
probability by using multivariate Cox regression. In
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Table 1 Patient characteristics between the training and testing dataset
Patient characteristic Training set Testing set P Patient characteristic Training Testing P
set set
No. of patients 1214 404 Surgery (%) 0.792
Survival time (median [IQR]), 35.00 [17.00, 34.00 [18.00, 0.844 N 680 (56.0) 230 (56.9)
days 66.00] 68.00]
Sex (%) 0037 Y 534 (44.0) 174 (43.1)
Female 378 31.1) 103 (25.5) Chemotherapy (%) 0.946
Male 836 (68.9) 301 (74.5) N 777 (64.0) 260 (64.4)
Age (%) 0.103 Y 437 (36.0) 144 (35.6)
< 60years 527 (434) 156 (38.6) Radiotherapy (%) 0.038
2 60 years 687 (56.6) 248 (61.4) N 1085 (89.4) 345 (854)
Area of residence (%) 0.083 Y 129 (10.6) 59 (14.6)
Rural 379 (31.2) 107 (26.5) Duration of pain (%) 0.247
Urban 835 (68.8) 297 (73.5) < 1month 259 (21.3) 102 (25.2)
Education (%) 0.863 1-6 months 831 (68.5) 260 (64.4)
lliteracy 163 (13.4) 61 (15.1) 6-12 months 99 (8.2) 30 (74)
Primary school 589 (48.5) 199 (49.3) > 12 months 25 (2.1) 12 (3.0)
Middle school 292 (24.1) 89 (22.0) (Pre)vious analgesic treatment 0.642
%
High school 133 (11.0) 42 (104) None 349 (28.7) 116 (28.7)
High school above 37 (3.0) 133.2) NSAIDs 123 (10.1) 50 (12.4)
Awareness of the disease (%) 0.121 Weak Opioids 373 (30.7) 119 (29.5)
Full understanding 675 (55.6) 212 (52.5) Strong Opioids 369 (30.4) 119 (29.5)
Partial understanding 191 (15.7) 55 (13.6) Effect (%) 0.995
Complete ignorance 348 (28.7) 137 (33.9) None 280 (23.1) 94 (23.3)
Metastasis (%) 0468 Bad 163 (134) 54 (134)
N 260 (21.4) 79 (19.6) Average 618 (50.9) 207 (51.2)
Y 954 (78.6) 325 (804) Satisfied 153 (12.6) 49 (12.1)
Hypertension (%) 0.517 Vomiting (%) 0.02
N 1031 (84.9) 337 (834) N 825 (68.0) 300 (74.3)
Y 183 (15.1) 67 (16.6) Y 389 (32.0) 104 (25.7)
Diabetes (%) 0.231 Abdominal distention (%) 0.684
N 1108 (91.3) 360 (89.1) N 808 (66.6) 274 (67.8)
Y 106 (8.7) 44 (10.9) Y 406 (334) 130 (32.2)
Smoke (%) 0.978 Tachypnea (%) 0.352
N 1025 (84.4) 342 (84.7) N 937 (77.2) 302 (74.8)
Y 189 (15.6) 62 (15.3) Y 277 (22.8) 102 (25.2)
Drink (%) 083 Edema (%) 0.599
N 1112 (91.6) 368 (91.1) N 969 (79.8) 328 (81.2)
Y 102 (84) 36 (8.9) Y 245 (20.2) 76 (18.8)
Constipation (%) 0.731 NRS (%) 0.152
N 690 (56.8) 225 (55.7) 0-3 126 (104) 55 (13.6)
Y 524 (43.2) 179 (44.3) 4-6 664 (54.7) 205 (50.7)
Weight loss (%) 0201 7-10 424 (34.9) 144 (35.6)
N 101 (83) 25 (6.2) KPS (%) 0313
Y 1113 (91.7) 379 (93.8) <30 375 (30.9) 141 (34.9)
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Table 1 Patient characteristics between the training and testing dataset (Continued)

Patient characteristic Training set Testing set P Patient characteristic Training Testing P
set set

Insomnia (%) 0.062 40 531 (43.7) 169 (41.8)

N 597 (49.2) 221 (54.7) 250 308 (25.4) 94 (23.3)

Y 617 (50.8) 183 (45.3) QOL (%) 0416
Anorexia (%) 0684 <30 450 (37.1) 140 (34.7)

N 168 (13.8) 52 (12.9) >30 764 (62.9) 264 (65.3)

Y 1046 (86.2) 352 (87.1) Status (%) 0.655
Nausea (%) 0.328 Censored 110 (9.1) 3382

N 835 (68.8) 289 (71.5) Dead 1104 (90.9) 371 (91.8)

Y 379 (31.2) 115 (28.5)

other words, we used the Cox regression model to do
the multivariable survival analysis, and Cox regression
coefficients to generate the nomogram [33]. For multi-
variate analysis of survival probability, the Cox regres-
sion was performed with the forward stepwise
procedure. Then, the performance of the nomogram was
evaluated using the area under receiver operating char-
acteristic curve (AUC) along with a 95% confidence
interval and calibration curves (500 bootstrap resamples)
in both the training and testing dataset. The AUC value
is almost treated as C-statistics to evaluate the predicting
performances dynamically and more intuitively [34, 35].
And calibration curve is useful for assessing whether
predicted outcomes approximate actual outcomes.

The R software version 3.6.2 (https://www.r-project.
org/) was used for the statistical analysis and P <0.05
was considered as the statistically significant. The overall
survival analysis was performed by Kaplan-Meier using
“survival” and “survminer” packages. LASSO Cox

regression analysis and nomogram were operated with
the “glmnet” and “rms” packages. Receiver operating
characteristic curves and calibration curves analysis was
conducted using the “timeROC” and “rms” packages. A
table for baseline patient characteristics was generated
using the “tableone” package.

Results

Characteristics of the dataset

181 patients with any missing data were excluded from
our study analysis. After exclusion, a total of 1618 pa-
tients with gastrointestinal cancer were included in our
study and randomly divided into two sets: 1214 patients
(110 censored) as training dataset and 404 patients (33
censored) as testing dataset. The overall survival func-
tion with a risk table was shown in Fig. 1. The median
survival time for overall included patients was 35 days
(interquartile ranges [IQR], 17-66). Among all cases,
70.3% were men and 57.8% were older than 60 years.
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Table 2 The result of Lasso Cox regression

Variable B HR 95%Cl Waldx2 P
Duration of pain

1-6 months -0.185 0831 0716-0965 —2423 0.015

6-12months 0385 0681  0534-0867 —3.111 0.002

>12months  —-0570 0566 0357-0897 —2422 0.015
Abdominal distention

Y 0.388 1475  1.291-1685 5714 1.11e-08
Edema

Y 0.340 1405 1.205-1.638 4336 145e-05
KPS

40 -0490 0613 0530-0.708 —6618 3.64e-11

=50 -0736 0479 0398-0576 —7.815 5.50e-15
QoL

>30 -0201 0818 0.711-0940 -2.834 0.005

Detailed information between the training and testing
dataset were summarized in Table 1. The median sur-
vival time for training dataset and testing dataset was 35
days (interquartile ranges [IQR], 17-66) and 34 days
(interquartile ranges [IQR], 18-68), respectively. As
shown in Supplementary Table 1, Liver cancer (25.3%),
esophageal cancer (24.8%), colorectal cancer (23.8%) and
gastric cancer (14.8%) accounted for the vast majority of
all included cases. On the whole, there was no much dif-
ference between the training and testing dataset.

Nomogram construction and validation
The optimal tuning parameter A for LASSO regres-
sion with 10-fold cross-validation was 0.093, with
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log(\) = - 2.375, following the one standard error of
the minimum criteria (Fig. 2a). At the optimal values
log (M), five variables (KPS, abdominal distention,
edema, QOL, and duration of pain) with a nonzero
coefficient were selected in the LASSO analysis (Fig.
2b). Then the five retained variables were used to
construct the nomogram by using multivariate Cox
regression. As shown in Table 2, KPS, abdominal dis-
tention, edema, QOL, and duration of pain were a
panel of significant predictors of overall survival (OS)
in patients with gastrointestinal cancer. In the nomo-
gram (Fig. 3), each prognostic variable corresponded
to a specific point by drawing a straight line upward
to the points axis. After calculating all variables’
points, the total points on the bottom scales that cor-
respond to the 30-day and 60-day survival probability
were showed respectively.

We examined the performance of our predictive
nomogram by employing both discrimination and
calibration assessments. The receiver operating char-
acteristic (ROC) curve analysis showed quite useful
discrimination in both the training and testing data-
set. As shown in Fig. 4, the AUC value was 0.723
(95% confidence interval, 0.694—0.753) at 30 days and
0.733 (95% confidence interval, 0.702-0.763) at 60
days in the training dataset. Similarly, the AUC value
was 0.724 (0.673-0.774) at 30days and 0.725 (0.672—
0.778) at 60 days in the testing dataset (Fig. 5). To as-
sess the calibration of the prognostic nomogram, we
compared the predicted 30-day and 60-day survival
probabilities to the actual 30-day and 60-day survival
probabilities. As shown in Fig. 6 and Fig. 7, the cali-
bration curves revealed good agreement between the
predicted and observed probabilities.
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Fig. 3 Nomogram predicting the 30-day and 60-day survival probability for patients with gastrointestinal cancer in home palliative care
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Discussion
Previous literature regarding home hospice care in China
does not differentiate between specific cancer groups
[23, 24]. However, several studies have shown that prog-
nosis information varies by cancer types [21, 36, 37]. As
a developing country, because of environmental pollu-
tion and the lack of early diagnosis and treatment, high
incidence occurs in gastrointestinal cancer with poor
prognosis in China [1]. This is the first time to analyze
gastrointestinal cancer-specific prognostic factors that
influence patients’ survival and build a model to accur-
ately predict survival time in home hospice care.
Compared with previous studies, the application of
LASSO Cox regression with cross-validation enabled us
to develop a more parsimonious predictive model with
superior performance. For example, Zhou LJ et al. iden-
tified 10 prognostic variables to develop a simple Chin-
ese Prognostic Scale (ChPS) with 65.4% accuracy in the
testing set by using traditional multivariable regression
[24]. In our study, we used the LASSO analysis to iden-
tify 5 preditors from all 28 initial variables. And the
evaluation of our predictive model showed quite useful
discrimination and good agreement calibration in both
the training and testing dataset. This is consistent with

the opinion that the LASSO have a better performance
against the traditional multivariable regression since it
can perform both variable selection and penalization
[38]. Penalized regression is utilized to avoid model
overfitting by using a loss function or penalty term that
is added to the objective function to control the com-
plexity of the model [31]. In clinical scenarios, a more
selective model would be preferred because it could save
time and resources, by avoiding collection of less useful
data. Besides, our predictive nomogram has the advan-
tage of not utilizing laboratory measures, which are diffi-
cult to obtain in hospice patients.

Many studies suggested that performance status along
with some clinical symptoms could improve the predic-
tion of survival for terminal cancer patients [24, 39, 40].
This parallels our findings. In our prognostic nomogram,
there are five predictors including KPS, abdominal dis-
tention, edema, QOL, and duration of pain. Among
these, KPS, the recognized tool to evaluate performance
status, has been found to be reasonably reliable in sur-
vival prediction for patients with advanced cancer even
when scores were as low as 50 [40, 41]. Poor perform-
ance status is associated with short survival. As shown in
our nomogram, the lower KPS patients were scored, the
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higher points they receive, indicating the worse their 30-
day and 60-day overall survival. Similarly, a patient ob-
tained a QOL score 30 or lower has worse probability of
survival than those were scored higher than 30. For the
predictor that “duration of pain” in our nomogram, the
shorter duration, the higher points, the worse probability
of survival. This is likely because those patients who ex-
perience acute pain usually have sever disease progres-
sion, which leads to shorter survival. Furthermore, we
should note that the symptoms (edema, abdominal dis-
tention and duration of pain) included in our nomogram
were not exactly the same as those included in previous
studies [42]. This may be due to the different character-
istics of the samples included in studies. As Glare re-
ported that there appeared to be apparent differences in
prognostic factors between those predicted survival less
than 3 months vs. those predicted survival ranging in the
3-12 months [43]. In addition, KPS and QOL scores are
generally low in our study. That’s possibly because the
performance and QOL status of patients with advanced
cancer in home hospice care is generally poor.

This study is certainly limited because it was per-
formed using a retrospective database from one hos-
pice center in China. First, the AUC is quite
acceptable, but not outstanding. It may be partly due
to the retrospective nature of this study and the lack
of our ability to capture all useful predictors and the
precision of each predictor. The data such as symp-
toms were collected as “present” or “absent” from the
case records. Second, the optimal method of valid-
ation for our predictive model is to use a separate

dataset from another center. A potential solution is to
prospectively perform a multicenter study, though this
is time-consuming and potentially unfeasible. More-
over, patients with any missing data were excluded
from our study analysis, which may affect the robust-
ness of the model to some extent. Last but not least,
we only included research objects who died within six
months, which seems to cause subject bias. However,
the clinical reality also needs to be considered. Pre-
cious few patients survived more than six months in
the hospice unit, and they were mostly in the early
stages of cancer. Those patients chose hospice treat-
ment mainly because of financial difficulties.

Conclusion

To our knowledge, this is the first application of LASSO
Cox regression with cross-validation to produce a
gastrointestinal cancer-specific nomogram to predict the
probability of survival at 30 days and 60 days in home
hospice care patients in China. Our nomogram may be a
useful non-lab clinical tool that needs prospective multi-
center validation as well as testing with Chinese clini-
cians in charge of hospice patients with gastrointestinal
cancers to assess acceptability and usability.
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