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Abstract 

Background Tailoring effective strategies for cancer pain management requires a careful analysis of multiple factors 
that influence pain phenomena and, ultimately, guide the therapy. While there is a wealth of research on automatic 
pain assessment (APA), its integration with clinical data remains inadequately explored. This study aimed to address 
the potential correlations between subjective and APA-derived objectives variables in a cohort of cancer patients.

Methods A multidimensional statistical approach was employed. Demographic, clinical, and pain-related variables 
were examined. Objective measures included electrodermal activity (EDA) and electrocardiogram (ECG) signals. Sensi-
tivity analysis, multiple factorial analysis (MFA), hierarchical clustering on principal components (HCPC), and multivari-
able regression were used for data analysis.

Results The study analyzed data from 64 cancer patients. MFA revealed correlations between pain intensity, type, 
Eastern Cooperative Oncology Group Performance status (ECOG), opioids, and metastases. Clustering identified three 
distinct patient groups based on pain characteristics, treatments, and ECOG. Multivariable regression analysis showed 
associations between pain intensity, ECOG, type of breakthrough cancer pain, and opioid dosages. The analyses failed 
to find a correlation between subjective and objective pain variables.

Conclusions The reported pain perception is unrelated to the objective variables of APA. An in-depth investiga-
tion of APA is required to understand the variables to be studied, the operational modalities, and above all, strategies 
for appropriate integration with data obtained from self-reporting.
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Background
Cancer pain is a prevalent concern among cancer 
patients. Significantly, according to the World Health 
Organization (WHO), 55% of individuals undergoing 
anti-cancer treatment suffer from moderate to severe 
pain. Furthermore, an even larger percentage, potentially 
reaching 70%, of those facing advanced or terminal ill-
nesses, experience pain [1, 2].

The challenge of pain management lies in tailoring 
effective strategies that address the unique nature of 
each individual’s pain experience while considering fac-
tors such as pain intensity, underlying causes, and per-
sonal responses to treatments [3–5]. The pain experience 
often reflects an intricate interplay of multiple factors, 
such as psychosocial elements, levels of distress, tumor 
attributes, disease advancement, and the underlying 
pain pathophysiology[4]. In this complex scenario, pain 
assessment is the cornerstone for planning effective pain 
management. Nevertheless, this crucial step is often chal-
lenging. The subjective nature of pain presents one of the 
most intricate aspects. The description of pain can vary 
significantly among individuals, highlighting the impor-
tance of employing methods that can accurately capture 
this diversity. Additionally, cultural influences play a role 
in how pain is expressed and communicated, leading to 
potential misunderstandings or underreporting [6]. Fur-
thermore, certain populations, such as children [7, 8] or 
those with cognitive impairments [9], present unique 
challenges, requiring specialized approaches to accu-
rately assess their pain experiences [10, 11].

Self-report measurement instruments, including the 
visual analog scale (VAS) and the numeric rating scale 
(NRS), are frequently employed to evaluate the intensity 
of pain. These scales heavily rely on the individual’s ability 
to accurately recall and convey their pain intensity, which 
can be affected by memory biases, emotional states, and 
cognitive impairments. Hence, due to the susceptibility 
of subjective methods to individual interpretations and 
biases, they fall short of fully encompassing the intricate 
complexity of pain [12].

Automatic Pain Assessment (APA) is focused on 
objective measures for the assessment of pain inten-
sity, offering a more unbiased substitute to subjec-
tive pain scales [13]. APA methodologies encompass 
a variety of behavioral and physiological approaches. 
Behavioral approaches include the analysis of facial 
expressions [14], linguistic patterns using qualitative 
and quantitative analyses [15], and the observation of 
non-verbal physical behaviors such as body movements 
and gestures [16]. On the other hand, physiological 
indicators concern the study of biosignals such as elec-
trocardiogram (ECG) and electrodermal activity (EDA), 
as well as advanced brain imaging techniques such as 

functional magnetic resonance imaging (fMRI) and 
electroencephalography (EEG), for addressing pain-
related brain activity [17]. In particular, biosignals like 
EDA and ECG could also offer the potential of being 
used in continuously monitoring settings and easily 
available as wearable devices, thus allowing implement-
ing systems that can register objective physiological 
variables reflecting both the sympathetic and parasym-
pathetic activity in daily situations and conditions. This 
would enable the long-term monitoring of subjective 
autonomous nervous system responses, as reflected by 
specific sympathetic and parasympathetic indicators 
that can be derived from galvanic skin responses and 
variability of cardiac rhythm.

Nevertheless, while APA methods have the poten-
tial to offer more objective insights into pain intensity, 
it is crucial to acknowledge their limitations. These 
mostly include the lack of high-quality validation stud-
ies, uncertainty about which parameters should be 
implemented in different settings, and technical issues 
such as timing of utilization [18]. Consequently, a com-
prehensive pain assessment approach should ideally 
combine both subjective self-reporting and objective 
measures to provide a more holistic understanding of 
pain experiences and enable better-informed pain man-
agement strategies.

Given these premises, the objective of this study was 
to explore potential correlations between subjective and 
objectively derived variables using APA modalities in 
cancer patients, as an initial step towards establishing a 
comprehensive pain assessment pathway.

Methods
Study design and population
The investigation was granted approval by the local Eth-
ics Committee of Istituto Nazionale Tumori, Fondazione 
Pascale, Naples, Italy (protocol code 41/20 Oss; approval 
date: 26 November 2020), and all participants provided 
written informed consent. All methods were performed 
following the ethical standards as laid down in the Dec-
laration of Helsinki and its later amendments or com-
parable ethical standards and it was registered with 
ClinicalTrials.gov, number (NCT04726228). The study 
employed a prospective observational design, utilizing 
medical records as its primary data source. The cohort 
for this study comprised adult patients undergoing treat-
ment for cancer-related pain at the Istituto Nazionale 
Tumori, Fondazione Pascale, Italy. Clinical-instrumental 
assessments and collection of anamnestic data were con-
ducted during a single outpatient visit at the pain therapy 
clinic. The process of recording biosignals was executed 
spanning a timeframe of approximately 5 min.
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Variables considered
The analysis involved the examination of numerous 
variables, including demographic factors such as age, 
and body mass index (BMI). Clinical measurements 
included the number of comorbidities (categorized as 
“None” and at least one), Eastern Cooperative Oncol-
ogy Group (ECOG) performance status (categorized as 
low ≤ 2, high > 2), metastases (yes/no), bone metastases 
(yes/no). Other clinical data concerned the type of anti-
cancer therapy (chemotherapy, immunotherapy, surgery, 
and radiotherapy). Pain-related variables were pain type 
(nociceptive, neuropathic) and intensity (0–10 NRS), 
breakthrough cancer pain (BTcP) [19], and its features 
(type: nociceptive or neuropathic; 0–10 NRS intensity). 
Pain therapy included opioids, calculated as morphine 
equivalent dose (MED) for background pain, rapid onset 
opioids for BTcP, and pain adjuvants (corticosteroids, 
antidepressants, anticonvulsants, muscle relaxants, and 
anti-anxiety medications).

Biosignals
The objective variables were obtained from the analysis 
of the EDA and ECG biosignals. EDA reflects the sym-
pathetic nervous system activity and serves as a valuable 
indicator for evaluating pain-induced neurocognitive 
stress. It detects alterations in the skin’s electrical prop-
erties, triggered by sweat gland activation, ultimately 
resulting in increased skin conductance [20]. The con-
tinuous variations in skin conductance are termed the 
Skin Conductance Level (SCL), while the rapid responses 
occurring within seconds are identified as the Galvanic 
Skin Response (GSR). Both SCL and GSR play roles in 
the tonic and phasic components (Fig. 1).

For acquiring and analyzing biosignals, we employed 
a previously validated approach [21]. Regarding EDA 
biosignals, two EDA-derived analyses have been per-
formed including the continuous decomposition analy-
sis (CDA), and the trough-to-peak (TTP) analysis, both 
conducted in accordance to [22–24]. For the analysis, the 
mean amplitude of all above-threshold GSRs was calcu-
lated for both CDA and TTP analyses and adopted as a 
representative parameter of the EDA signal since it pro-
vides an overall synthetic measure of the average ampli-
tude of registered skin conductance responses.

Concerning the ECG signal, temporal changes in 
inter-beat intervals offer a gauge of heart rate variability 
(HRV), closely associated with the autonomic nervous 
system (ANS) activity. These fluctuations can also sig-
nal physiological reactions to stressful or painful situa-
tions. Following our previous study [21], we focused on 
the R-R series of interbeat intervals, defined as the time 
between successive R waves of the QRS complex on the 

ECG waveform, [25], and then used it to extract time-
domain parameters of the HRV. In particular, as reported 
in [21], R peaks were detected using a modified version 
of the Pan-Tompkins technique based on the ECG enve-
lope and subsequent flattening of the signal to enhance 
the QRS-complexes as proposed in [26–28], and the 
raw series of differences between consecutive peaks was 
obtained (R-R). Then, using a recursive filtering process, 
the ECG-derived R-R time series were filtered to remove 
outliers and intervals that deviated most from the mean 
of the nearby RR intervals. Subsequently, from the ECG-
derived R-R time series (Fig. 2), the heart rate (HR) time 
series has been obtained, and the standard deviation (SD) 
of both R-R and HR series has been calculated and used 
as a reference time-domain indicator of the variability of 
the heart rhythm.

As we described in a previous study [21], EDA and 
ECG signals have been acquired by using a BITalino 
device equipped with sensors for the recording of ECG 
and EDA signals. The BITalino platform is a hard-ware-
affordable and open-source biosignals platform devel-
oped for physiological computing. Signals have been 
collected at a 1000 Hz sampling rate.

Statistical analyses
The sensitivity analysis tests were conducted using the Li 
and Yu [29] and Raikov test [30] on the continuous vari-
ables for assessing the potential Missing Not At Random 
(MNAR) process presence. Therefore, based on the infor-
mation obtainable from the data and the context, the best 
conclusion on the mechanism generating the missing 
data will be reached. A Multiple Imputation analysis was 
finally performed on data to preserve the sample size.

Fig. 1 Phasic and tonic components of the electrodermal 
activity (EDA) signal over time. Legend: The signal is recorded 
in microsiemens (µS)
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Fig. 2 Plot of the ECG and R-R intervals over time

Fig. 3 Flowchart of the study. Abbreviations: EDA, electrodermal activity; ECG electrocardiogram
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A Multiple Factorial Analysis (MFA) was performed 
on data to detect multi-correlations and associations 
between numerical and categorical variables within the 
context of subjective and objective pain features. It is a 
statistical technique used for analyzing databases with 
large sets of variables that are suspected of being statis-
tically related and describe the same set of observations 
or individuals [31]. This strategy is often implemented 
for addressing different types of variables (e.g., numeri-
cal, categorical) and for analyzing their relationships 
in a single analysis by creating principal components 
(PCs) which are assigned as a part of data behavior and 
variability. MFA allows analysts to explore patterns, simi-
larities, and differences between the different sets of vari-
ables and observations [32]. In our analysis, a focus was 
applied to the main interest variables namely EDA and 
ECG derivates and BTcP presence (groups: No BTcP, 
BTcP), by reading 2D-projected modalities in the facto-
rial plane respect with the BTcP intensity groups.

Within the realm of MFA, when dealing with complex 
multidimensional datasets featuring numerous categori-
cal variables, the utilization of Multiple Correspond-
ence Analysis (MCA) proves to be a valuable strategy. It 
enables the condensation of dataset dimensions into a 
selected set of categorical variables, effectively capturing 
the most essential information. Therefore, we adopted a 
data-driven approach known as Hierarchical Clustering 
on Principal Components (HCPC). This approach har-
moniously integrates three established methods includ-
ing MCA, or PC analysis (PCA) for numerical variables, 
hierarchical clustering, and the k-means algorithm, to 
derive a refined and enhanced cluster solution [33]. 
Through this amalgamation of techniques, we aimed 
to extract a more robust and accurate representation 
of patterns and relationships present within the data. 
Operatively, the HCPC method provides a PCA and, 
subsequently, a hierarchical clustering by implementing 
an agglomerative hierarchical tree; the ideal number of 
groups is obtained by a pruning approach; then k-means 
was performed on data by setting the number of groups, 
obtained as described above. Thus, different variables 
were inserted in the routine to find the BTcP-related risk 
groups. They included BTcP type, ECOG, metastases 
(No, Yes, bone metastases), chemotherapy, radiotherapy, 
and surgery, as well as drug therapy including MED (≤ 60 
mg; > 60 mg) and adjuvants. Finally, a multivariable lin-
ear regression analysis was conducted to assess the main 
associations between MED (treated as a number and 
binary variable) and potentially related variables.

The data were analyzed using the R software version 
4.2.3 (R Core Teams, R Foundation for Statistical Com-
puting, Vienna, Austria). The toolkit included car, purr, 
boot, snow, misty, and naniar. The Mice package was 

adopted for the imputation of the missing data. Facto-
MineR was used for the implementation of factor analy-
sis methods. Moreover, graphical packages were adopted 
for the visualization of the plots. The graphics packages 
included ggplot2 and factoextra. Biosignal processing 
and analysis were conducted using MatLab v. R2021b 
from The Math-Works Inc.

Results
Among 153 patients deemed eligible for the study, biosig-
nals were recorded from 118 individuals. Data from 54 
patients were excluded from the analysis due to issues 
with signal quality or incomplete information. Ultimately, 
the exploratory statistical analysis incorporated clinical, 
demographic, and biosignal variables from 64 patients 
(Fig. 3).

Table 1 Demographic data and variables (n = 64)

Abbreviations: BMI body mass index, ECOG Eastern Cooperative Oncology 
Group performance status, BTcP Breakthrough cancer pain, NRS Numeric Rating 
Scalem, CDA Continuous Decomposition Analysis, TTP Trough-To-Peak, SDRR 
standard deviation R-R (interbeat intervals), SDHR standard deviation heart rate

Variable (n/%)

Age ECOG
 Mean (SD) 60.6 (13.3)  < 3 44 (69%)

BMI  > 2 20 (31%)

 Mean (SD) 25 (4.5) Metastases
Comorbidities No 30 (47%)

 None 31 (48%) Yes 13 (20%)

  ≥ 1 33 (52%) Bone metastases 21 (33%)

BTcP Chemotherapy
 No 36 (56.2%) No 36 (56%)

 Yes 28 (43.8%) Yes 28 (44%)

Type of BTcP Immunotherapy
 None 37 (58%) No 61 (95%)

 Neuropatic 7 (11%) Yes 3 (5%)

 Nociceptive 20 (31%) Surgery
BTcP Intensity No 55 (86%)

 No BTcP 36 (56%) Yes 9 (14%)

 NRS 4–8 14 (22%) Radiotherapy
 NRS > 8 14 (22%) No 47 (73%)

Adjuvants Yes 17 (27%)

 No 40 (63%) Mean CDA
 Yes 24 (38%) Mean (SD) 0.1 (0.1)

Opioids Mean TTP
 No 14 (22%) Mean (SD) 0.1 (0.1)

 Yes 50 (78%) SDRR
Type of Tumor Mean (SD) 56.9 (59.1)

 Other 23 (36%) SDHR
 Gastro-intestinal 11 (17%) Mean (SD) 6.5 (7.1)

 Breast 6 (9%)

 Bone/soft tissue 13 (20%)

 Lung 11 (17%)
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Demographic data, clinical variables, as well as subjec-
tive and objective data are reported in Table 1.

Multiple factorial analysis for BTcP analysis
The MFA focused on the main two components or 
dimensions of variables correlation, expressed as Facto-
rial Axes (FA1 and FA2). The total explained variance was 
30.3% (17.7% on FA1, 12.6% on FA2) for the complete set 
of variables.

The first dimension (FA1) was mainly described by 
BTcP presence (23.6%) and Type of BTcP (22.8%), fol-
lowed by ECOG, Opioids, and Metastases (13.1%, 11.2%, 
and 10.3%, respectively) (Fig. 4a). The second dimension 
(FA2) was strongly characterized by the objective vari-
ables SDHR and SDRR (42.9% and 42.0%, respectively), 
followed by metastases (7.1%) (Fig. 4b).

Moreover, poor correlations were found for Metastases 
with FA1  (cos2 = 0.05); concerning FA2, strong indica-
tors were found for both SDHR and SDRR (both contrib-
uted > 42% and > 0.8  cos2’s, and almost null values were 
calculated for other variables); mean TTP and CDA were 
mainly collected into the third dimension (absolute con-
tributes: 26.2% and 24.5%, and similar  cos2’s).

The factorial plane highlighted the characteristics of the 
BTcP groups. Patients without BTcP tended to be treated 
with lesser opioid dosages (MED) for background pain 
(67% vs 93%, p = 0.03) and, although not significantly, 
they were less prone to undergo chemotherapy (33% vs 
57%, p = 0.1), and radiotherapy (22% vs 32%, p = 0.54) 
compared to BTcP affected cancer patients. Patients with 
BTcP were more likely to have metastases (64% vs. 22%, 
p = 0.18, not shown in table), especially bone metastases 
(46% vs. 22%, p = 0.12) compared with no BTcP group. 

Moreover, the BTcP group was characterized by a higher 
ECOG (57% vs. 11%, p < 0.01). MFA detected no poten-
tial correlations between subjective variables (BTcP pres-
ence) and objective ones (Fig. 5).

The results of the univariable group analysis for BTcP 
are presented in Table 2.

Clustering on principal components for BTcP
The optimal partition based on principal components 
yielded 3 distinct clusters. MCA reported a global vari-
ability explanation of 35.2% on 10 categorical variables 
and 22 modalities. None of the cancer patients belong-
ing to Cluster 1 (27 cancer patients) had MED (p < 0.01), 
almost 93% of them had a low ECOG (p < 0.01), more 
than 88% did not have chemotherapy (p < 0.01), 96.3% 
radiotherapy (p < 0.01), did not present metastases 
(74.1%, p < 0.01). This cluster was mainly characterized 
by no pain nor nociceptive pain (0% and 18.5%, respec-
tively, p < 0.01); 59.4% of cancer patients with no pain 
belong to cluster 1. Cluster 2 was composed of 14 can-
cer patients, all of whom had chemotherapy (p < 0.01) 
and was characterized by a low ECOG (p < 0.01). An 
amount of 57% of them suffered from neuropathic pain 
(p = 0.04), only one had nociceptive pain, and another 
one did not assume opioids. Cluster 3 (23 individu-
als) was characterized by opioids assumption (100%, 
p < 0.01), high ECOG (90% of them belonged to cluster 
3, p < 0.01, 78.3% of cluster 3), had MED > 60 (65%; cor-
responding to the 75% of the whole set of patients with 
MED > 60, p < 0.01); moreover, cancer patients of clus-
ter 3 were affected by bone metastases BTcP (81% of 
all bone metastases belonged to cluster 3, of them the 
73.9% was bone metastases, p < 0.01) (Fig. 6).

Fig. 4 The main absolute contributes and main squared cosines to the factorial axes: Factorial Axes (FAs): FA1 (a) and FA2 (b)
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The principal component analysis identified three dis-
tinct clusters. Multiple Correspondence Analysis (MCA) 
explained 35.2% of global variability across 10 categorical 
variables and 22 modalities. Cluster 1 (27 patients) had 
no MED, predominantly low ECOG, no chemotherapy, 
and no metastases. It was characterized by the absence 
of pain, with 59.4% of pain-free patients belonging to this 
cluster. Cluster 2 (14 patients) had all patients on chemo-
therapy, low ECOG, and some experiencing neuropathic 

pain. Cluster 3 (23 patients) had 100% opioid usage, high 
ECOG, MED > 60, and a high prevalence of bone metas-
tases BTcP.

Results from the k-mean were reported in Table  3. 
Comparing clusters with BTcP measures 87% of cancer 
patients, in cluster 1 were not affected by BTcP while 
cluster 3 was characterized by higher NRS pain (85% vs. 
17%, p < 0.01). Mean CDA, mean TTP, SDNN (defined 
as the normal R-R intervals standard deviation, after 

Fig. 5 Multiple Factorial Analysis. Factorial planes for modalities and individuals. Legend: The first two dimensions were considered. Strong 
components were given by the type of BTcP, the intensity of BTcP, ECOG, Opioids, and metastases. Very poor contributions were finally detected 
for objective pain variables (red spots and labels): TTP, CDA SDHR, SDNN. The projection from the center to the variable’s point revealed two 
key aspects including an orthogonal alignment with the existing variables’ cloud pattern and a predominantly centralized contribution 
to FA2. Therefore, null correlations were confirmed between subjective variables (BTcP Intensity as NRS measure) and objective ones. The red 
arrow (zoomed mean of coordinates from the objective variables) points out the variable cloud shape, stating that poor correlations were 
detected. Each black point represents a variable modality which was plotted as “name of the variable”-underscore-modality: “N” = “No”, “Y” = “Yes”, 
“neuro” = “neuropathic”, “nocic” = “nociceptive”. Abbreviations: BMI, body mass index; ECOG, Eastern Cooperative Oncology Group performance 
status; BTcP, Breakthrough cancer pain; CDA, Continuous Decomposition Analysis; NRS, Numeric Rating Scale; TTP, Trough-To-Peak; SDRR, standard 
deviation R-R (interbeat intervals); SDHR, standard deviation heart rate; MED, Morphine Equivalent Dose
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outliers removal from R-R series), and SDHR were not 
found as significantly different among clusters.

Multivariable regression analyses for opioid therapy
In multivariable analysis, age and BMI were not associ-
ated with opioid therapy (see Model 1, Table  4). Simi-
larly, no significant differences based on SDNN, SDHR, 
and adjuvant therapy were detected; the opioid amount 
was significantly and positively associated with ECOG as 
cancer patients with higher ECOG meanly received 72.4 
MED more (95% CI: [12.1,133.0], p = 0.02). A positive 
correlation was found with the type of BTcP (p < 0.01): 
neuropathic pain likely received more opioids (147 units 
of MED) compared with No pain. Mean TTP showed a 
non-significant trend with the MED therapy (p = 0.09). 
In the logistic analysis (Model 2, Table  4) a significant 
association with higher MED assumption was given by 
the Intensity of BTcP, as expected: in particular, cancer 
patients with high pain (> 8 NRS) were 8 times more likely 
to receive higher opioid dosages (MED > 60) (OR = 8.3, 
95%CI = [1.8, 48.4], p = 0.02). A borderline association 
was detected for SDHR (OR = 1.5, 95%CI = [0.98, 2.39], 
p = 0.06).

Discussion
To effectively manage pain, a thorough assessment of 
the various components that characterize different pain 
manifestations is essential [34]. This is particularly crucial 
for oncological pain, which exhibits complex and distinc-
tive features [35]. For instance, BTcP is a sudden, intense 
flare-up of pain that occurs in cancer patients who are 
already receiving pain medication for their chronic pain. 
It is a pain phenomenon with a complex pathophysiology 
that has yet to be fully characterized [36]. In this convo-
luted situation, integrating objective data in a multidi-
mensional model and analyzing clinical and therapeutic 
elements can yield significant insights for tailoring the 
therapy [17].

While research on APA processes is a rapidly advanc-
ing field [17, 18, 37], to our knowledge, this study repre-
sents one of the first attempts to integrate data derived 
from biosignal analysis and subjective, patient-reported, 
elements. For this aim, we followed a multidimensional 
exploratory statistical pathway. In the MFA, variability is 
condensed into a few components (dimensions) by creat-
ing FAs. This approach is employed to clarify the general 
pattern of data when there is a large number of statisti-
cal relations among a set of numerous variables [32]. 
The obtained latent variables (i.e., FA1 and FA2) are lin-
ear combinations of the data variables. They collect the 
sample’s variability in a descending manner with the first 
being the most significant, followed by the second, and 
so on. These latent variables are uncorrelated with each 

Table 2 Analysis of BTcP groups

Abbreviations: BMI body mass index, ECOG Eastern Cooperative Oncology Group 
performance status, CDA Continuous Decomposition Analysis, TTP Trough-To-
Peak, SDRR standard deviation R-R (interbeat intervals), SDHR standard deviation 
heart rate
a Wilcoxon rank sum test; Pearson’s Chi-squared test

Variable No BTcP
n = 36

BTcP
n = 28

No BTcP vs.  BTcPa

Age 0.760

 Mean (SD) 59.7 (14.8) 61.7 (11.1)

BMI 0.180

 Mean (SD) 25.7 (4.2) 24.1 (4.8)

Comorbidities 0.636

 None 16 (44%) 15 (54%)

 ≥ 1 20 (56%) 13 (46%)

ECOG  < 0.001
  < 3 32 (89%) 12 (43%)

 > 2 4 (11%) 16 (57%)

CDA 0.808

 Mean (SD) 0.1 (0.2) 0.1 (0.1)

TTP 0.556

 Mean (SD) 0.1 (0.1) 0.1 (0.1)

SDRR 0.962

 Mean (SD) 59.3 (64.2) 53.7 (52.7)

SDHR 0.984

 Mean (SD) 6.9 (7.8) 5.9 (6.3)

Metastasis 0.117

 No 20 (56%) 10 (36%)

 Yes 8 (22%) 5 (18%)

 Bone 8 (22%) 13 (46%)

Chemotherapy 0.099

 No 24 (67%) 12 (43%)

 Yes 12 (33%) 16 (57%)

Surgery  > 0.999

 No 31 (86%) 24 (86%)

 Yes 5 (14%) 4 (14%)

Radiotherapy 0.544

 No 28 (78%) 19 (68%)

 Yes 8 (22%) 9 (32%)

Adjuvants  > 0.999

 No 22 (61%) 18 (64%)

 Yes 14 (39%) 10 (36%)

Opioids 0.027
 No 12 (33%) 2 (7%)

 Yes 24 (67%) 26 (93%)

Cancer Type 0.842

 Other 15 (42%) 8 (29%)

 Gastrointestinal 5 (14%) 6 (21%)

 Breast 3 (8%) 3 (11%)

 Bone/soft tissue 7 (19%) 6 (21%)

 Lung 6 (17%) 5 (18%)
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other and reflect distinct aspects of the whole set of vari-
ables. The analysis showed that the presence or not of 
BTcP, and BTcP type are mainly projected onto the first 
dimension (FA1). Notably, they represent “subjective" 
variables. This result suggests that clinical and subjec-
tive factors, including patients’ overall health, strongly 
describe BTcP features. On the other hand, statistical 
measures (contributions and squared cosines) demon-
strated that the objective APA-extracted variables are 
not correlated with the other clinical factors. Therefore, 
although as expected, patients with BTcP had worse clini-
cal conditions, for example in terms of ECOG and metas-
tases [38], the analysis failed to find a correlation between 
subjective and objective pain variables to explain the 
BTcP phenomenon. These findings were confirmed by 
the clustering analysis as well as in the multivariate analy-
sis conducted for therapeutic profile characterization 
(MED). Remarkably, the results indicated that perfor-
mance status and the type of pain are correlated with a 
higher demand for opioid analgesics, objective variables 
alone did not provide a clear or comprehensive explana-
tion for the overall opioid dosage.

The lack of statistical correlation between APA varia-
bles and pain features and management can be attributed 
to the inherent complexity of pain, the individual nature 
of pain perception, and the limitations of measurement 
methods. Objective pain measures are based on physio-
logical or clinical indicators, such as HR, blood pressure, 
or the presence of specific physical symptoms. Subjective 

pain assessments, on the other hand, rely on patients’ 
self-reported experiences, including pain intensity, qual-
ity, and emotional aspects. These two approaches may 
capture different aspects of pain, making them less likely 
to correlate. Besides the barrier between objective and 
subjective measures, the lack of significance of quanti-
tative physiological parameters based on EDA and ECG 
should be investigated from a broader and more complex 
perspective as it can be affected by other measuring and 
technical factors, such as the duration of the recordings 
and the type of features considered, which is limited to 
the most widespread and simple indicators GSRs and HR 
variations and does not still consider frequency-domain 
parameters that could better enlighten the role of sym-
pathovagal balance as well as more complex and sophis-
ticated measures of nonlinear and chaotic dynamics (e.g., 
entropy indices, fractal analysis) that may be involved in 
physiological control systems in pathological states. As 
mentioned in the Introduction section, by elucidating the 
role of biosignals in cancer pain assessment, the poten-
tial of such sources of information to be used in continu-
ously monitoring settings could then be fully exploited, 
such as through the integration of pain indicators within 
wearable platforms for long-term patients’ monitoring. 
Moreover, pain is a complex and highly individual expe-
rience [39]. The variability in pain perception can make 
it challenging to establish a direct relationship between 
objective physiological changes and subjective pain 
reports. Furthermore, pain perception is influenced by 

Fig. 6 Cluster analysis for opioid therapy. Legend: The study identified three distinct clusters through principal component analysis. Multiple 
Correspondence Analysis (MCA) explained 35.2% of global variability across 10 categorical variables and 22 modalities. Cluster 1 (27 patients) 
had no medication, mostly low Eastern Cooperative Oncology Group (ECOG) performance status scores, no chemotherapy, and no metastases, 
with no or minimal pain reported. Cluster 2 (14 patients) consisted of patients all on chemotherapy, with low ECOG scores, and some experiencing 
neuropathic pain. Cluster 3 (23 patients) showed 100% opioid usage, high ECOG scores, MED > 60, and a high prevalence of bone metastases 
breakthrough cancer pain (BTcP)
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Table 3 Cancer pain clusters

Cluster p-values

Variable 1, n = 27 2, n = 14 3, n = 23 C1 vs  C2a C1 vs  C3b

Age 0.601 0.238

 Mean (SD) 57.7 (15.2) 62.1 (8.8) 63.0 (12.9)

BMI 0.063 0.243

 Mean (SD) 26.1 (4.4) 23.6 (3.7) 24.6 (5.1)

Comorbidities 0.381  > 0.999

 None 12 (44%) 9 (64%) 10 (43%)

  ≥ 1 15 (56%) 5 (36%) 13 (57%)

ECOG-PS 0.780  < 0.001
  < 3 25 (93%) 14 (100%) 5 (22%)

  > 2 2 (7%) 0 (0%) 18 (78%)

BTcP 0.405  < 0.001
 No 22 (81%) 9 (64%) 5 (22%)

 Yes 5 (19%) 5 (36%) 18 (78%)

BTcP Pain 0.012  < 0.001
 No pain 22 (81%) 9 (64%) 6 (26%)

 Neuropathic 0 (0%) 4 (29%) 3 (13%)

 Nociceptive 5 (19%) 1 (7%) 14 (61%)

BTcP Intensity 0.303  < 0.001
 No BTcP 23 (85%) 9 (64%) 4 (17%)

 Moderate (NRS 4–8) 1 (4%) 1 (7%) 12 (52%)

 Severe (NRS 9–10) 3 (11%) 4 (29%) 7 (30%)

Mean CDA 0.762 0.397

 Mean (SD) 0.1 (0.2) 0.1 (0.2) 0.1 (0.1)

Mean TTP 0.640 0.220

 Mean (SD) 0.1 (0.2) 0.1 (0.1) 0.1 (0.1)

SDRR 0.281 0.386

 Mean (SD) 55.4 (59.7) 69.0 (62.0) 51.3 (58.2)

SDHR 0.211  > 0.999

 Mean (SD) 6.2 (7.2) 7.9 (7.7) 6.0 (6.8)

Metastases 0.038  < 0.001
 No 20 (74%) 5 (36%) 5 (22%)

 Yes 6 (22%) 6 (43%) 1 (4%)

 Bone metastases 1 (4%) 3 (21%) 17 (74%)

Chemotherapy  < 0.001 0.010
 No 24 (89%) 0 (0%) 12 (52%)

 Yes 3 (11%) 14 (100%) 11 (48%)

Surgery 0.835  > 0.999

 No 23 (85%) 13 (93%) 19 (83%)

 Yes 4 (15%) 1 (7%) 4 (17%)

Radiotherapy  < 0.001 0.029
 No 26 (96%) 5 (36%) 16 (70%)

 Yes 1 (4%) 9 (64%) 7 (30%)

Adjuvants 0.232 0.314

 No 20 (74%) 7 (50%) 13 (57%)

 Yes 7 (26%) 7 (50%) 10 (43%)

Opioids Therapy 0.023  < 0.001
 No 13 (48%) 1 (7%) 0 (0%)

 Yes 14 (52%) 13 (93%) 23 (100%)
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psychological factors, such as anxiety, depression, and 
coping strategies [40]. These aspects can significantly 
impact a person’s subjective pain experience but may 
not be reflected in objective measures. Another key ele-
ment is the clinical setting adopted for APA recording. 

Objective measures may be more reliable in acute pain 
situations, such as post-surgery, where there is a clear 
physiological response. In chronic pain conditions, the 
relationship between objective and subjective measures 
may be less straightforward due to long-term adaptations 

Table 3 (continued)

Cluster p-values

Variable 1, n = 27 2, n = 14 3, n = 23 C1 vs  C2a C1 vs  C3b

MED 0.005  < 0.001
 ≤ 60 27 (100%) 9 (64%) 8 (35%)

  > 60 0 (0%) 5 (36%) 15 (65%)

Abbreviations: BMI body mass index, ECOG Eastern Cooperative Oncology Group performance status, BTcP Breakthrough cancer pain, CDA Continuous Decomposition 
Analysis, NRS Numeric Rating Scale, TTP Trough-To-Peak, SDRR standard deviation R-R (interbeat intervals), SDHR standard deviation heart rate, MED Morphine 
Equivalent Dose
a Wilcoxon rank sum test; Wilcoxon rank sum exact test, Pearson’s Chi-squared test
b Wilcoxon rank sum test, Pearson’s Chi-squared test

Table 4 Multivariable regression analyses

Abbreviations: BMI body mass index, ECOG Eastern Cooperative Oncology Group performance status, BTcP Breakthrough cancer pain, NRS Numeric Rating Scale, 
TTP Trough-To-Peak, SDRR  standard deviation R-R (interbeat intervals), SDHR standard deviation heart rate
a Referred to Gaussian multivariable regression model (Model 1)
b Referred to logistic multivariable regression model (Model 2)
*  not entered the model; ^0–10 Numeric Rating Scale

Model 1 Model 2

Variable Betaa 95% CI p-value ORb 95% CI p-value

Age 0.991 0.370

  ≤ 60 — — — —

  > 60 -0.32 -58, 57 1.90 0.47, 8.65

BMI 0.335 0.890

 < 25 — — — —

  ≥ 25 27 -28, 82 1.10 0.29, 4.15

ECOG 0.020 *

  < 3 — —

 > 2 72 12, 133

BTcP Intensity^ * — — 0.024
 No BTcP

 NRS ≤ 8 2.13 0.45, 10.7

 NRS > 8 8.30 1.78, 48.4

Type of BTcP 0.003 *

 No BTcP — —

 Neuropathic 147 65, 229

 Nociciceptive 50 -12, 113

Mean TTP -21 -46, 3.2 0.086

SDRR -1.4 -3.5, 0.68 0.183 0.96 0.91, 1.01 0.108

SDHR 13 -3.8, 31 0.122 1.47 0.98, 2.39 0.063

Adjuvants 0.410 *

 No — —

 Yes -24 -81, 34
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and psychosocial factors [41]. Consequently, serious 
challenges arise for the analysis of acute cancer pain phe-
nomena such as BTcP. More importantly, for an effec-
tive physiological characterization, objective measures 
should capture the phenomenon in real time. It would 
require almost continuous recording of physiological 
data. Likely, the availability of detection systems with 
wearable platforms and more complex feature extraction 
approaches for biosignal analysis may provide us with 
more reliable data. In this initial investigation, the pur-
pose was to understand the potential for integrating data 
to subsequently enhance both data collection and analy-
sis strategies.

Study limitations
While the study aims to offer insights into the multi-
modal assessment of cancer pain, its limitations under-
score the need for cautious interpretation of its findings. 
For example, the study’s sample size might not be repre-
sentative of the broader population of cancer patients. 
Moreover, the investigation was conducted at a single 
medical institution, which could limit the generalizabil-
ity of the findings to other healthcare settings and diverse 
populations. Biosignal measurement represents the main 
limitation of the study. For example, the timing and 
methods of recording are crucial aspects to be defined 
to calibrate a model. The accuracy and reliability of these 
signals in assessing pain can be influenced by factors 
such as noise, signal artifacts, and individual variability in 
physiological responses. Furthermore, additional biosig-
nals-based features derived from time- and frequency-
domain approaches as well as time–frequency analysis 
and newly proposed deep learning-based features for 
both ECG and EDA have not been considered in this 
study but will be adopted in future works to widen the 
range of quantitative physiological parameters that could 
provide new descriptors and predictors of pain, thus 
yielding higher sensitivity in quantifying cancer pain. 
Finally, the study lacked extensive validation of its biosig-
nal-based pain assessment methods against established 
pain measurement techniques. Notably, the absence of 
high-quality validation studies could limit the reliability 
of these methods.

Conclusions
Recognizing the significance of thorough pain assess-
ment is a pivotal step in enhancing pain management 
strategies. Although subjective pain assessment modali-
ties are widely used to understand and manage pain, they 
are not without limitations. Striking a balance between 
patient reports and objectivity in pain assessment can 
offer incredible opportunities to provide optimal care. 

Nevertheless, achieving a cohesive integration between 
the objective physiological parameters assessed through 
APA and the subjective insights gathered from self-
reporting is a complex endeavor. It is crucial to recognize 
the significance of each considered feature and thought-
fully harmonize them to derive comprehensive conclu-
sions that truly capture the essence of pain phenomena. 
Future research with larger and more diverse samples, 
rigorous validation of biosignal-based methods, and 
controlled experimental designs could provide a more 
comprehensive understanding of pain assessment and 
management strategies.
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